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SUMMARY 
In order to simulate flows in the shallow water limit, the full incompressible Navier-Stokes equations with free 
boundaries are solved using a single layer of finite elements. This implies a polynomial approximation of the 
velocity profile in the vertical direction, which in turn distorts the wave speed. This fact is verified by numerical 
results: the wave speed depends on the vertical discretization. When at least two layers of finite elements are used, 
the boundary layer at the bottom can be simulated and the comct solution for the shallow water limit is recovered. 
Then this algorithm is applied to the prediction of Tsunami event. 
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1. INTRODUCTION 

Owing to the increasing interest in ecological problems much effort has been devoted in recent years to 
the mathematical and numerical modelling of the ocean-atmosphere system.' The ocean is usually 
described by means of the 2D shallow water (SW) equations?-4 These are derived by the asymptotic 
expansion in the domain thickness of the Navier-Stokes (NS) equations and are valid in the long-wave 
limit (see References 5 and 6 for details). 

Most of the models assume the hydrostatic pressure approximation to close the system, but, because 
of this hypothesis, solitary waves are not allowed to be simulated. To describe these phenomena within 
the SW theory, higher-order terms have to be retained in the 2D asymptotic expansion: a numerical 
method for solving this problem is discussed in Reference 7. 

In this paper the model relies on the finite element discretization of the NS equations via a single 
layer of elements only in depth. This approach has two main advantages. 

1. The approximated solution is obtained by a standard incompressible Navier-Stokes code (e.g. 
the methods proposed by Hughes et a1.' Pironneau,' Patera and  coworker^,^^^^^ Hansbo," 
Tezduyar et ~ f . ' ~ - ' ~  and Cornetti16 could be applied). 

2. The 3D Navier-Stokes equations with FEM discretization have more mathematical support 
than the asymptotic analysis, where assumptions on the dependence of the solution on the third 
co-ordinate may not always be satisfied. 
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The single-layer discretization is equivalent to imposing a linear profile on the velocity in the water 
depth. For the zero-viscosity case, i.e. for the incompressible Euler equations with free boundary, the 
related 2D equations are derived from the weak formulation. They do not coincide with the 2D SW 
system: they lead to similar phenomena such as wave propagation on the free surface, but with 
different wave speed. However, the phase speed may be corrected by using a non-linear velocity 
profile. In the limit of constant velocity along the layer the classical value for the long-wave limit is 
recovered. 

The characteristic-Galerkin method to solve the NS with free boundary problem has been discussed 
in Reference 16 (see also References 17 and 18 for an overview). The domain is decomposed into 
tetrahedral elements and convection is performed along the trdectories. In Section 3, for the solitary 
wave test problem, numerical results confirm the dependence of the wave propagation speed on the 
velocity profile. Moreover, a boundary layer appears at the bottom of the domain if a finer 
discretization is used. 

The correct behaviour, at a reasonable price, is recovered via two layers of finite elements, where the 
lowest one takes into account the high velocity gradients near the wall. An application of this 
procedure to propagating fronts generated by earthquakes on the sea bottom, tsunamis, is proposed in 
Section 4. 

Alternatively, as suggested by the derivation of the 2D equations, the discretization by a single layer 
of brick or pentagonal elements, with a discrete function space using f (z is the vertical co-ordinate 
and a a parameter), could be employed. 

2. SINGLE-LAYER FINITE ELEMENT APPROXIMATION OF NAVIER-STOKES EQUATIONS 
(SLNS) 

In order to compare other shallow water models with our approach, we discretize in depth only (i.e. 
along the vertical direction) the incompressible NS equations with free boundaries. This leads to two- 
dimensional equations. 

From now on we systematically adopt the following rules: italic indices i, j, . . . take values in the set 
{ 1,2,3]; Greek indices a, jl, . . . take values in the set { 1,2}. The repeated index summation convention 
is used in conjunction with these rules. 

2. I .  Linear velocity discretization 

The velocity profile is assumed to be linear in z (see Figure 1) and the augmented pressure. 

P ' = P + g z  

Q(t) = {x = (y, z): y E w c R2, 0 < z < h(y, t ) } .  

constant along the layer 

Therefore the following associated problem may be stated. 

z _-  
n 

I _ -  
ro - 

Y 

Figure 1. Geometry of fluid layer with imposed linear velocity profile 
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Find u E Vh and p' E QJ, such that for all v E Vh and for all q E Q h  we have 

Vh = {V = %/hi V E L2(0, T; H ' ( o ) ~ ) ,  0 < z < h(y, t) ,  y E O; V,(y, t )  = 0, y E aO}, 
Qh = (4 E L2(0, T; L 2 ( ~ ) ) } .  

The bottom is assumed to be flat, while the free surface equation is z=h(y, t). On the bottom, no- 
slip conditions are imposed and the horizontal velocity components vanish on a0. The motion of the 
free boundary X is described by 

a,h + UpaSh = U ,  on z. 
Using a linear profile, we have 

a,h + 2iipaph = 2ii3, 

where ii is equal to the mean velocity value in each vertical section: 

To simplify the analysis, the case v = 0 is considered in the following. 

Proposition 1 

The incompressible Euler equations with free boundaries, approximated by a linear velocity profile 
and constant pressure in the vertical direction are equivalent to the following set of equations: mass 

a,h + ap(hiip) = 0, 

ha& + ;hiisapii, + ;ii,iisaph + ;@' - gh)a,h +:hag' = 0, 

ha,ii, - ii,a,h + 2 (iighaSii3 - ii,iipaph) + 26: + 2 (sh - p') = 0, 

(4) 

horizontal momentum 

( 5 )  

vertical momentum 

(6)  

where ii, = 4 a,h + iipaph. 

ProoJ First COnSiQtr the mass conservation equation in (1). Using the function spaces Vh and Qh, 
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By means of the free surface condition (3) the previous expression is rewritten as 

Now consider the momentum equation 

+ upapUa + u3a3uu)va 

ha,iia - iiaath ij, Jl J, 

i i p  hapi, - GUaph 
h2 -dy 42&+ 

= J, h2 h 

= Iw[$(ha,iia - iiaa,h) + 2(hiipapiia - iiaiipa,h) + f i i 3 i i a ] 2 r a ,  

where the averaged vertical velocity ii3 is eliminated using (3): 

= 1 ($ ha,iia + 2hiipa,iia + 3 iiaiisaph)Va. 
W 

From the divergence term, 

Then, using Green’s formula and the fact that the horizontal components of the test kct ion ia vanish 
on the boundary a0, it follows that 

The unit normal to the free boundary X is given by 
1 

n3 = 
J(aahaah + 1) ’ n = (-a,h, -a2h, l)n3, 

so that the integral on Z in (8) is replaced by an integral over the 2D domain o: 

Then for w3 = 0 the horizontal momentum equation is derived as 

ja($ha,iia + 2hiipalpiia + $iiaii,&h)Va + (2p’aah + hQ’)Za - 2ghaahia = 0. J” (9) 



FINITE ELEMENT APPROXIMATION OF NAVIER-STOKES EQUATIONS 147 

Applying the same procedure using the test function v=(O, 0, q) yields the vertical momentum 
balance 

Equations (4x6)  are obtained by writing the previous expressions (7), (9) and (10) in strong form. 0 

2.2. Hydrostatic approximation 

If 2.43 << 1, from equation (6) the hydrostatic approximation 

p‘ = gh 

is recovered. Adding the mass conservation equations multiplied by ii, to the horizontal motion 
equations, the following system is obtained in conservative form: 

The unknowns are the two averaged horizontal velocity components ii, and the water depth h. The 
structure of the system (1 1) is quite similar to the standard shallow water equations 

a,(hii,) + ap(hii,iig) + gha,h = 0, 

a,h + aS(hiis) = 0, 

except for the numerical coefficients and the third term in the momentum equations. 

h = H + v ,  is 
Linearizing the system around ii, = 0 and h = H, the wave equation for a small fluctuation q of h, 

gq - ;gHa,a,q = 0, 

with the associated wave propagation speed 

c = J@H), 

which is not the classical value c = J(gH). 

overcome this physical inconsistency, a different vertical profile should be imposed. 
This fact is confirmed by numerical computations as discussed in the related Section 3.2. To 

2.3. Non-linear velocity discretization 

A more general expression for the velocity could be used, 
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where a is a parameter with value between 0 and 1, a E 30, 13. The boundary layer upper limit hb, since 
by definition the velocity in the boundary layer satisfies lul < o’951Ulz=h, is given by 

hb = 0.95”‘h. 

For a = 1 the linear case considered in the previous subsection is recovered. The discrete function 
spaces for velocity and pressure respectively are 

vh = {V = (U + I)(Z/h)‘c V E L2(0, T ;  H1(W)3)9 O < Z < h(J’, t), y E W ;  Va(J’, t )  = 0, J’ E aO), 
Qh = (4 E L’(0, T; L2(w))}. 

Using the function space v h ,  the motion of the free boundary X is described by 
a,h + (a + l)iigagh = (a + l)ii3. 

Proposition 2 

The incompressible Euler equations with free boundaries, approximated by the function spaces vh and 
Q h ,  are equivalent to the following system of equations: mass 

a$ + ag(hii,) = 0, (12) 

horizontal momentum 

2a + 1 
a + l  

2a + 1 +- @laah - ghaah) + hag’ = 0, 

vertical momentum 

(gh -PI) = 0, ( ~ + 1 ) ( 2 a + l ) ~ :  I 2 a + 1  
3 a + l  

(hiigagii, - aii,iigagh) + (a + 1)(2a + 1) 
3a + 1 

ha,ii, - aii3aJI + 
(14) 

where 

- a,h + iigagh. 
1 

u3 = - 
a + l  

The proof holds in the same way as for Proposition 1. 

2.4. Linearized dynamics 

In the next proposition the dispersion relation, i.e. the formula that gives the frequency o as a 
function of the wave number Ikl = J(k,ka), w = w(lkl), is written for the linearized equations. They 
are derived from (12H14) without any major hypothesis and incorporate the effect of deviation from 
hydrostatic balance. 

Proposition 3 

The dispersion relation associated with the linearized equations of (12H14) is 
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PmoJ The system (12H14) is expanded around U = 0, h = H and q and w are the depth and velocity 
fluctuation respectively: 

h = H + ? ,  iii = 0 + wi. 
The vertical momentum balance (14) gives 

1 
2a + 1 H$? + gH + gtl p' = - 

and, replacing the previous expression in the horizontal equations of motion (13), 

where also the mass conservation equation is considered. The variable w, is eliminated fiom (1 5 )  and 
the system is reduced to 

Substituting the periodic travelling wave form of the solution 

rl = ?o exp[i(k,x, - w01 
yields the dispersion relation (1 5).  0 

Remark 1 

The wave equation (1 7) looks similar to the one described by Camassa and Holm6 in the absence of 
stratification, for instance due to a salinity gradient, where the term 

H2a,$V = H2a,a,(agwg) 

in (1 6) represents the non-hydrostatic dispersion effect. 
Figure 2 shows a comparison between the adimensionalized phase speed 

C 0 

C=lk17 c' = - 40' 

1 
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wave number ild 

Figure 2. Adimensionalized phase speed c' for SLNS and WW equations as a function of wave number Ikl. The depth is set to 
H= 1 
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as a function of the wave number Hlkl, for equation (13) and for the relation 

w2 = glkl ~ ( H l k l )  

associated with the linearized water wave (WW) equations (see Reference 5 for the derivation). In the 
long-wave limit Hlkl + 0 the SLNS equation for a=O is now, with a constant horizontal velocity 
profile, physically correct. The global behaviour could be recovered by tuning the parameter a. For 
instance, for a = 1 the dispersion relation related to the WW equations is well approximated in the 
medium-wave range. 

3. NUMERICAL SIMULATION 

The numerical scheme to solve the incompressible Navier-Stokes equation with free boundary in the 
single-layer case has been discussed in Reference 16. Briefly, a splitting technique is used first by the 
method of characteristics the total derivative and the free surface position are computed, then an 
implicit Stokes problem is solved on the new domain. Mesh points on the surface are moved in the 
vertical direction only and tetrahedral elements with function spaces P1 +bubble for velocity and P1 
for pressure discretization are used in order to satisfy the Babuska-Brezzi condition for the Stokes 
problem. The method is employed to simulate the dynamics of a solitary wave as a test problem. For 
comparison the solutions using several layers of finite elements are given also. 

3.1. Solitary wave test problem 

equation in the limit of a long-wave and small-amplitude perturbation: 
For inviscid flows the free surface dynamics may be described by the Korteg de Vries (KdV) 

?l 
€=--<< 1, 

H P = lklH << 1, 

where lkl = 2z/A is the wave number and A is the wavelength. The mean surface elevation H is 
displayed in Figure 3. The KdV equation has an analytical solution, called a soliton, represented by a 
single peak propagating in time (for an overview of the KdV and other SW equations see Reference 5).  
The surface displacement is given by 

q = Asech(--.;i--?, X - C  

with 

c = J[gH(l + 4 
the wave propagation velocity, A a constant and sech the hyperbolic secant function. 
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Using the previous algorithm, the propagation of a solitary wave in a constant depth channel is 
computed. As initial condition the velocity is set to zero and the free boundary profile is given. On the 
side wall a slip condition is imposed in the vertical direction, while a no-slip condition is assumed for 
the bottom. Figure 4 displays the mesh used for the single-layer case. 

Numerical data are listed below: 

horizontal domain 

acceleration due to gravity g = 1 
initial free boundary profile qO1, yz) = 0.01 sech(v,/8) 
water depth H= 1 
time step k = 2  

The expected wave propagation speed is 

w=]O, lOO[X] - 5, 5[ 
initial velocity u = o  

c = &H(1 +€)I = 1. 

3.2. Computed results 

Figure 5 shows the behaviour of the solitary wave in time. Only a single layer of finite elements is 
used and a linear velocity profile is recovered in the vertical direction. The wave top conserves one half 
of the initial elevation, so that part of the potential energy is transformed into kinetic energy. Owing to 
the high Reynolds number, Re = 1000, the wave is moving without being flattened by viscosity. 

A finer discretization, using more layers of finite elements in the vertical direction (see Figure 6), 
displays a rapid growth of the horizontal velocity near the bottom, while the profile remains constant in 
the rest of the domain: a boundary layer appears. In Figure 7, to get a better result, the mesh is refined 
in the high-gradient region. Applying the same number of layers as in the previous case, the horizontal 
velocity variation is now confined to a narrower part which depends on the size of the lower layer. 

For practical application a two-layer discretization would be sufficient. In particular, a thin layer is 
employed in the strong-gradient region. Figures 7 and 8 show almost the same vertical velocity profile, 
despite only two layers being used in the latter. 

0 

Figure 4. Perspective view of initial mesh. Tebahedral elements are placed in a single layer. Grey tones on the top surface indicate 
the displacement q 
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I I t  I 1 

0 

Figure 5. Cut view of test problem solution with single layer of tetrahedral elements at three different times. The surface 
displacement q is magnified by a factor of 1000 and the layer thickness H by a factor of 10. The horizontal velocity scale is 

shown (top left) 

The distance of the computed water level from the analytical one (see equation (1 8)) is divided by 
the amplitude of the solitary wave, A = 0.005, to obtain the relative L' error. This error, represented by 
Figure 9, decreases with the size of the lower layer of finite elements. Also, the wave speed is 
measured. The adimensional value c' = c/J(gH) is given below for all four discretization cases: 

single layer 0.89 
four layers 0.95 
four layers + refinement 0.97 
two layers +refinement 0.96 

The numerical results confirm the dependence of the phase speed on the vertical discretization 
shown in Section 2. Whenever the mesh grid is refined and well adapted to the solution, the correct 
phase speed value is achieved in the limit. 



ES I 
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.... .. . . . . . . . . .  

0 . 3  .35 8 
I J 

Figure 7. Cut view of solution with four layers of finite elements refined near bottom. The velocity profile is almost constant and 
the boundary layer is confined to a thin region. Re = loo0 

4. A PREDICTION OF A TSUNAMI 

An earthquake on the sea floor induces an instantaneous motion of the water surface. Despite its 
usually low amplitude (1 m) in the deep sea, the propagating front can reach a large amplitude near the 
coast as a consequence of refiaction and local topography. 

Algeciras Bay in the Mediterranean Sea is used for the simulation of one of these events. The 
computational domain includes both the bay and the epicentre. It has a characteristic length of about 
30 km and the height of the water surface is increased by about 2 m as initial condition at the 
epicentre. 
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.. . -_ . . . . . . . .. . . . . __ -. -. - 

Figure 8. Cut view of solution with two-layer discretization only. The vertical size of the lower layer is 0-125 and the total depth 
H= 1. The velocity profile and surface phase speed look almost the same even though a smaller number of elements have been 

used as in Figure 7 

4. I .  Boundaly conditions 

The computational 3D domain is redefined to allow variations in the bottom profile z = -H(y): 
2 Q(t) = Ix = (y, 4: y E c [w I q(y, t )  > z > -H(y)}, 

where z = q(y, t )  is the equation of the free surface, so that h = tf + H is the total depth. 
As shown in Figure 10, the boundary is decomposed as follows: 

m(t) = r,(t) u ro u q t ) ,  
side wall r,(t) = {x = (y, z): y E a0, q(y, r )  > z > -H(y)},  
bottom r, = {x = (y, z): y E w, z = - ~ ( y ) j ,  
free surface C(t) = {x = (y, 2): y E co, z = q(y,  t)}. 
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Figure 9. Relative L' error of water level with three different meshes at time t = 50. From top to bottom: single layer, four layers 
and two layers with refinement. The results are consistent with the wave speed data. The error decreases when the size of the 

lower layer of finite elements is reduced 

Then the boundary conditions for the 3D incompressible NS equations are applied: 

coast (u,, u2) = (0, 0), aju3nj = 0 on rJ0, 
open sea - vajuin, + (p + gz)ni = gun, on rp(t), 
bottom u = O  on To, 
free surface - vajuinj + (p + gz)n, = grp, on C(t),  

with r,(t) = ru(t)rp(t). Here g is the acceleration due to gravity, v is the kinematic viscosity and n is 
the outward-pointing normal to asZ(t). At time t = 0 the velocity over all the domain is set to zero. 
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l-0 Y 
L 

Figure 10. Geometry of fluid layer for tsunami problem 

The flow is able to slip along the side wall in the vertical direction. On Z W p  the surface tension and 
tangential stresses are neglected and the hydrostatic pressure p =gtt is imposed. In environmental 
flows r, represents the shoreline with zero horizontal velocity and rp the open sea. The last condition 
allows surface waves to radiate out of the domain without being reflected. 

4.2. Computed results 

The two-layer mesh used for the finite element discretization is shown in Figure 1 1. The lower layer 
is only 10 m heigh and therefore is not visible in the figure. 

The magnitude of the time step is limited by a CFL condition associated with the wave propagation 
speed. The minimum horizontal element size hT = 500 m and maximum depth H,, = 500 m give a 
bound on the time step: 

General data for the numerical simulation are listed below: 

number of mesh points 

acceleration due to gravity 
initial water surface elevation 
radius of initial water surface perturbation 
maximum water depth 
time step k = 6  s 

Figures 12-14 display the computed results. Grey tones ilIustrate surface elevation. The epicentre is 
located at about 12 km from the coast in a region of 500 m deep water. 

The propagating front is reflected by a sudden change in the bottom profile near the coast (compare 
Figure 13 with the sea bottom topography in Figure 11). Then the maximum surface elevation on the 
shore is detected close to the two sides of the bay entrance, as shown in Figure 14. 

2822 x 3 

g = 9 4  m s-' 
q 0 = 2  m 
ro = 3 km 
H,, = 500 m 

initial velocity u = o  

5 .  CONCLUSIONS 

The long-wave shallow water model differs from the single-layer FEM discretization of the NS 
equations. In the single-layer NS approach the phase speed depends on the velocity profile in the layer 
depth. To obtain the physically correct phase speed in the long-wave regime, high-order polynomials in 
the vertical direction have to be used or, alternatively, a two-layer discretization. In these cases the 
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Figure 1 1. Mesh of sea bottom. The depth is magnified by a factor of five. Tetrahedral elements are placed in two layers; the 
lower layer is only 10 m high, which is small, since the maximum total depth of the domain is 500 m 

- 4  - 1  0 1  a . 

Figure 12. Perspective view of solution for tsunami problem. As initial condition the water level is increased by 2 m at the 
epicentre, located 10 km off the coast. The surface elevation scale in metres (top left) and the time (top right) are shown 
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Figure 13. Perspective view of solution for tsunami problem. Before reaching the coast, the wave Front is partially reflected by the 
sudden change in the bottom topography 

equivalent of the two-dimensional limit model has the same behaviour as the NS approach, i.e. they 
display the same phase speed, but at the same time is more general than the shallow water equations, 
because the hydrostatic approximtaion is not necessary. 
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li..;l 1. P 

0 .1 - 1  
- 4  4 
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Figure 14. Perspective view of solution for tsunami problem. The maximum surface elevation on the shore is found on each side 
of the bay entrance 
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